Defining the propofol binding site location on the GABAA receptor.
نویسندگان
چکیده
The GABAA receptor is a target of many general anesthetics. The low affinity of general anesthetics has complicated the search for the location of anesthetic binding sites. Attention has focused on two pairs of residues near the extracellular ends of the M2 and M3 membrane-spanning segments, alpha1Ser270/beta2Asn265 (15' M2) and alpha1Ala291/beta2Met286 (M3). In the 4-A resolution acetylcholine receptor structure, the aligned positions are separated by approximately 10 A. To determine whether these residues are part of a binding site for propofol, an intravenous anesthetic, we probed propofol's ability to protect cysteines substituted for these residues from modification by the sulfhydryl-specific reagent p-chloromercuribenzenesulfonate (pCMBS-). pCMBS- reacted with cysteines substituted at the four positions in the absence and presence of GABA. Because propofol binding induces conformational change in the GABAAreceptor, we needed to establish a reference state of the receptor to compare reaction rates in the absence and presence of propofol. We compared reaction rates in the presence of GABA with those in the presence of propofol +GABA. The GABA concentration was reduced to give a similar fraction of the maximal GABA current in both conditions. Propofol protected, in a concentration-dependent manner, the cysteine substituted for beta2Met286 from reaction with pCMBS-. Propofol did not protect the cysteine substituted for the aligned alpha1 subunit position or the 15' M2 segment Cys mutants in either subunit. We infer that propofol may bind near the extracellular end of the betasubunit M3 segment.
منابع مشابه
A propofol binding site on mammalian GABAA receptors identified by photolabeling
Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent ...
متن کاملA Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes*
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yl...
متن کاملMutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors.
Propofol is a sedative and anesthetic agent that can both activate GABA(A) receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABA(A) receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains ...
متن کاملPotentiating effect of glabridin from Glycyrrhiza glabra on GABAA receptors
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes ...
متن کاملIdentification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site‐directed mutagenesis
BACKGROUND AND PURPOSE β2/3-subunit-selective modulation of GABAA receptors by valerenic acid (VA) is determined by the presence of transmembrane residue β2/3N265. Currently, it is not known whether β2/3N265 is part of VA's binding pocket or is involved in the transduction pathway of VA's action. The aim of this study was to clarify the localization of VA's binding pocket on GABAA receptors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 65 1 شماره
صفحات -
تاریخ انتشار 2004